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ABSTRACT: Fusarium oxysporum is a ubiquitous species complex of soil-borne plant pathogens comprising
of many different formae speciales, each characterized by a high degree of host specificity. Fusarium
oxysporum is a ubiquitous inhabitant of soils worldwide and causes diseases such as wilt, yellows and
damping-off in different plant species. Rapid and reliable detection of the pathogen is essential for
undertaking appropriate and timely disease management measures. The time-consuming and laborious
classical detection methods are now being increasingly replaced by culture-independent molecular detection
techniques, which are much faster, more specific and sensitive. The molecular techniques like microarrays,
whole genome sequencing, DNA barcoding, metagenomics etc. can identify a large number of isolates in a
single assay. Some of the emerging tools will also allow complete analysis of developmental processes that are
characteristics of the fungus, including the molecular nature of pathogenicity.

INTRODUCTION

Fusarium oxysporum is an economically important
soilborne pathogen with worldwide distribution (Santos
et al., 2002). The fungus causes vascular wilt in about
80 botanical species by invading epidermal tissues of
the root, extends to the vascular bundles, produces
mycelia and/or spores in the vessels, and ultimately
results in death of the plants (Namiki et al., 1994).
Individual pathogenic strain within the species has a
limited host range, and strains with similar or identical
host range are assigned to intraspecific groups, called
form a specialis (Namiki et al., 1994). Fusarium, the
single most important genus of toxigenic fungi, has had
a confusing and unstable taxonomic history. A number
of factors, including a lack of clear morphological
characters separating species, leading to species
concepts that are too broad, together with variation and
mutation in culture, have conspired to create taxonomic
systems that poorly reflect species diversity. The result
of this confusion is the rampant misapplication and
inconsistent application of species names to toxigenic
and pathogenic isolates. With the recent advent of
multilocus phylogenetic methods which allow for the
objective identification of species boundaries in the
Fungi (Taylor et al., 2000), Fusarium oxysporum
Schlechtend. Fr. (F.o.) is an important asexual species
complex and is well represented among the soil borne
fungi in every type of soil all over the world (Burgess
1981). F.o. includes morphologically indistinguishable
pathogenic, non-pathogenic and even beneficial strains.

The pathogenic strains cause diseases such as vascular
wilt, yellows, root rot and damping-off in a wide
variety of economically important crops (Beckman and
Roberts 1995), while the non-pathogenic strains are
defined as the strains for which no host plants have
been identified (yet) (Lievens et al. 2008). As a species,
F.o. probably causes more economic damage to
agricultural crops than any other pathogen. In spite of
the broad host range of the species as a whole,
individual strains usually infect only a single or a few
plant species. These individual fungal strains usually
show a high level of host specificity and, based on the
plant species they can infect, they have been classified
into more than 120 formae speciales (Armstrong and
Armstrong 1981); for example, F.o. f. sp. cicericauses
wilt only in chickpea. However, some formae speciales
such as F.o. f.sp. radicis-cucumerinum and F.o. f.sp.
radicis-lycopersici have broader host ranges, which,
apart from infecting cucumber and tomato respectively,
can cause root and stem rot on multiple hosts from
different plant families (Lievens et al. 2008). Isolates
from a particular forma specialis can be further
subdivided into physiological races based on cultivar
specificity. In addition, based on the ability to form
heterokaryons, F.o. strains have been grouped into
vegetative compatibility groups (VCGs; Puhalla 1985),
and different formae speciales and races may contain
multiple VCGs (Katan 1999; Katan and Di Primo
1999).
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Thus, with regard to effective management of the
pathogen, identification below the species level is
essential. Identification of F.o. pathotypes is
traditionally based on the combination of diagnostic
symptoms on the host and the presence of the fungus in
the affected tissues (Baayen et al. 2000). However, this
classical approach is becoming increasingly challenging
because more than one forma specialis may infect a
particular host, along with non-pathogenic strains,
which are common soil and rhizosphere inhabitants
(Edel et al. 2000). Genetic differences among F.o.
formae speciales have been evaluated through the
analyses of pathogenicity, VCG, chromosomal features,
rDNA, mtDNA and other molecular markers (Jacobson
and Gordon 1990; Puhalla 1985; Katan and Katan
1999; Appel and Gordon 1995; O'Donnell et al. 1998;
Alves-Santos et al. 1999). However, molecular
discrimination of F.o. is complicated by the observation
that different isolates classified into a single forma
specialis may have independent evolutionary
(polyphyletic) origins (O'Donnell et al. 1998; Baayen et
al. 2000; Skovgaard et al. 2001; Cramer et al. 2003),
and that isolates that belong to different formae
speciales may share a common ancestor (monophyletic
origin; Kistler 1997).
Technological advances in molecular detection methods
allow fast and accurate detection and quantification of
plant pathogens and these are now being applied to
practical problems. The information resulting from such
experiments could be used to monitor the level of
exposure of the crop to pathogen inoculum and to
improve disease control by allowing more rational
decisions to be made about the choice and the use of
fungicides and resistant cultivars.

With all these approaches, implementation of
appropriate disease management measures requires
timely detection and reliable identification of the
pathogen and its races.
Early and reliable detection is crucial for the
containment of the disease and implementation of
disease control strategies when they are likely to be
most effective. In recent years, the increasing use of
molecular methods in fungal diagnostics has emerged
as a possible answer to the problems associated with
existing phenotypic identification systems.

REVIEW OF LITERATURE

Classically, plant pathogenic fungi were characterized
by a series of morphological criteria including cultural
characteristics on growth media and diagnostic
symptoms on the host along with the presence of the
fungus in the affected tissues (Baayen et al. 2000).
However, accurate identification of fungi by visual
examination of such morphological criteria is very
difficult and erroneous. Moreover, these methods have
other major limitations such as, reliance on the ability
of the fungus to be cultured, time-consuming and
laborious nature of identification process and the
requirement for extensive taxonomical knowledge,
which complicate timely disease management
decisions. Therefore, attempts are being made to
replace these methods with molecular identification
techniques. As a results, in the last two decades,
molecular tools have had a major impact on the
identification of plant pathogens. Molecular techniques
can avoid many of the drawbacks associated with
classical methods of pathogen identification and can
also improve our understanding of pathogen detection
in different conditions.
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In general, these techniques are more specific, sensitive
and accurate than traditional methods, and do not
demand specialized taxonomical expertise. Today, a
wide range of molecular techniques are being applied to
accurately identify F.o. isolates (Table 1), of which
those based on detection of pathogen DNA or RNA are
the most predominant.

A. Identification using anonymous markers
Anonymous marker techniques like restriction fragment
length polymorphism (RFLP), random amplified
polymorphic DNA (RAPD), amplified fragment length
polymorphism (AFLP), etc. have been successfully
used for identification of F.o. isolates by several
workers.

Fig. 1.

Restriction Fragment Length Polymorphism
(RFLP). RFLPs have been extensively used to
characterize F.o. isolates and VCGs (Flood et al. 1992;
Manicom and Baayen 1993; Fernandez et al. 1994; Mes
et al. 1994; Appel and Gordon 1995; Baayen et al.
1997; Kistler 1997). Baayen et al. (1998) screened
isolates of F.o. from lily (F.o. f.sp. lilii) for
pathogenicity, vegetative compatibility and RFLP
patterns, and compared these to reference isolates of the
formae speciales gladioli and tulipae. They found that
the isolates from Europe and United States shared
unique RFLP patterns and belonged to the same VCG.
While, RFLP analysis of Fusarium isolates from
carnation by Manicom et al. (1990) and Manicom and
Baayen (1993) showed two major VCGs, each

characterized by a distinct RFLP pattern. Similarly,
Fernandez et al. (1994) used RFLP analysis to identify
four ribosomal DNA (rDNA) and seven mitochondrial
DNA (mtDNA) haplotypes in F.o. f.sp. vasinfectum, the
causal organism of cotton wilt. Attitalla et al. (2004)
evaluated isozyme analysis, mtDNA-RFLP and High
performance liquid chromatography (HPLC) to
differentiate two morphologically indistinguishable
formae speciales of F.o., lycopersici and radicis-
lycopersici. Although HPLC produced distinct profiles
for non-pathogenic and pathogenic isolates, the direct
mtDNA-RFLP technique proved to be an efficient
diagnostic tool for routine differentiation of lycopersici
and radicis-lycopersici isolates.
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However, although RFLP has been successfully used in
many studies to identify Fusarium isolates, due to its
labor-intensive nature, elaborate procedure and the need
of high amount of DNA (Garcia-Mas et al. 2000), it is
being replaced by polymerase chain reaction (PCR)
based techniques.
PCR allows rapid detection and identification of
pathogens and overcomes most of the limitations of
classical approaches. It has revolutionized the detection
of pathogens and PCR-based methods are now widely
used for identification of a variety of pathogens because
of its rapid, sensitive and specific nature. Many PCR-
based approaches have been reported for identification
of F.o. isolates and to study the genetic relationships
among them. These fungi have been differentiated
using either mycotoxigenic genes, ribosomal DNA,
other genes or unique DNA bands from RAPD analysis
(reviewed by Edwards et al. 2002).
Random Amplified Polymorphic DNA (RAPD).
RAPD is a quick and cost-effective method to detect
pathogens and study the genetic similarity or diversity
among pathogen populations. The technique has been
extensively used to analyze genetic diversity among
different F.o. formae speciales and races (Grajal-
Martin et al. 1993; Bentley et al. 1994; Kelly et al.
1994; Manulis et al. 1994; Wright et al. 1996).
Paavanen-Huhtala et al. (1999) analyzed 27 F.o.
isolates by RAPD and isozyme patterns; however, all

the isolates could only be distinguished from each other
by RAPD analysis. Mes et al. (1999) screened two
races of F.o. f.sp. lycopersicifor vegetative
compatibility and characterized them using RAPD
analysis, and found that the RAPD profiles coincided
with the vegetative compatibility groups.
The RAPD technique has been used to differentiate a
collection of isolates into races corresponding to
pathogenicity tests in cotton (Assigbetse et al. 1994)
and basil (Chiocchetti et al. 1999; Chiocchetti 2001),
while Jimenez-Gasco et al. (2001) identified specific
RAPD amplification profiles for Foc races 0, 1B/C, 5,
and 6. Using RAPD-generated DNA probes, Wang et
al. (2001) developed a sensitive and specific method for
identifying F.o. f. sp. cucumerinum and F.o. f.sp.
luffaeisolates. After RAPD analysis of 13 formae
speciales of F.o., specific DNA bands were selected as
probes and the forma specialis-specific probes were
developed for identification of F.o. f.sp. cucumerinum
and F.o. f.sp. luffae isolates by dot blot hybridization.
Lievens et al. (2007) developed a robust RAPD marker-
based assay to specifically detect and identify the
cucumber pathogens F.o. f.sp. cucumerinum and F.o.
f.sp. radicis-cucumerinum. Based on the phylogeny of
translation elongation factor-1a (TEF-1a), they found
that F.o. f.sp. cucumerinum strains were genetically
more diverse, while the F.o. f.sp. radicis-cucumerinum
strains clustered in a separate clade.

Fig. 2. Flowchart describing the process of using TEF DNA sequence to  identify Fusarium species.
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The developed markers were implemented in an DNA
array to enable parallel and sensitive detection and
identification of the pathogens in complex samples
from diverse origins. However, although the RAPD
technique has been successfully used in many studies
for detection and identification of F.o. isolates as well
as to evaluate the genetic diversity within and among
pathogen populations, it suffers from well-known
limitations of poor reproducibility and inter-laboratory
transferability.
Amplified Fragment Length Polymorphism (AFLP).
Amplified Fragment Length Polymorphism (AFLP)
markers are extremely powerful because of their high
multiplex power, enabling the generation of a large
number of bands per gel (amplification). Therefore, it
has high potential for the development of specific
primers in the identification of isolates. Given these
needs and the molecular tools available, this study was
conducted to assess the possibility of developing
specific fingerprinting within the formae speciales of

FOP to be able to trace the presence of these isolates in
the main passion fruit-producing regions and to find the
different ways of genetic structuring of FOP isolates,
one of the principal infectious agents of passion
fruit.AFLP has been used in many studies for the
analysis of fungal population structure (Majer et al.
1996; Gonzalez et al. 1998; DeScenzo et al. 1999;
Purwantara et al. 2000; Zeller et al. 2000). Genetic
variation among pathogenic isolates of F.o. was
estimated using AFLP markers by several workers
(Baayen et al. 2000; Bao et al. 2002; Sivaramakrishan
et al. 2002; Groenewald et al. 2006; Stewart et al.
2006). Later, the utility, reproducibility and efficiency
of AFLP technique led to its broader application in the
analysis of population diversity and identification of
pathogens (Baayen et al. 2000; Abd-Elsalam et al.
2002a 2002b; Kiprop et al. 2002; Sivaramakrishan et
al. 2002; Abdel-Satar et al. 2003; Leslie et al. 2005,
Gurjar et al. 2009).
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The technique was used to examine genetic
relationships among isolates of F.o. f.sp. vasinfectumby
Abd-Elsalam et al. (2004) and Wang et al. (2006).
While, Gurjar et al. (2009) identified two Foc races (1
and 2) based on unique AFLP patterns. Sequence
characterization of these race-specific AFLP products
revealed significant homologies with metabolically
important fungal genes. However, as AFLP is relatively
costly and has a rather complicated technical procedure,
it is being increasingly replaced by simpler PCR-based
methods.
Simple Sequence Repeats (SSR). Microsatellites or
simple sequence repeats (SSRs) are composed of
tandemly repeated 1-6 bp long units (Tautz, 1989).
Microsatellites markers are having a reputation of
highly polymorphic, locus specific, easily transferable,
and cost-effective molecular markers distributed
throughout the genome (Powell et al., 1996).Simple
sequence repeats, also known as microsatellites,
provide a powerful tool for taxonomic and population
genetics studies. They have also been used in fungal
studies because of the high resolution that they provide
(Bogale et al. 2005, 2006; Bayraktar et al. 2008). van

der Nest et al. (2000) used inter-simple sequence repeat
(ISSR) and SSR primers (random amplified
microsatellites, RAMS) in PCR to develop SSR
markers for F.o. In our laboratory at NCL, Barve et al.
(2001) assessed the genetic variability in Foc
populations prevalent in India using 13 oligonucleotide
probes and 11 restriction enzymes. Using the
distribution of microsatellite repeats, it was found that
the races 1 and 4 were closely related as compared to
race 2, while race 3 of the pathogen was very distinct.
However, as these anonymous marker techniques have
several disadvantages, diagnostic DNA fragments
identified with these approaches have often been
converted into more simple and reliable molecular
markers like sequence characterized amplified region
(SCAR) or sequence tagged sites (STS). This approach
has proven to be effective for the identification of
several formae speciales and races of F.o. For example,
Kelly et al. (1998) developed an in planta PCR method
to detect isolates of race 5 of Foc in chickpea. The
assay using RAPD-derived SCAR markers specifically
identified race 5 of the pathogen from infected chickpea
plants.

Fig. 3. Graphical representation of relative density (a) and relative abundance (b) of different SSR type found in
ESTs and transcripts of Fusarium oxysporum.
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Similarly, Jimenez-Gasco and Jimenez-Diaz (2003)
sequenced previously identified Foc specific RAPD
markers and designed SCAR markers to identify Foc
and its four pathogenic races 0, 1A, 5, and 6. The
assays were sensitive enough to detect as low as 100 pg
of fungal genomic DNA. Based on RAPD analysis,
Shimazu et al. (2005) developed three sets of STS
markers for specific identification of three races of F.o.
f.sp. lactucae. These markers were specific to F.o. f.sp.
lactucae and did not amplify DNA from isolates of five
other F.o. formae speciales as well as other plant
pathogenic fungi, bacteria, or plant materials examined
in the study.

B. Identification using sequence-specific markers
Although the above-mentioned techniques have been
successful in accurately identifying the pathogens in
many cases, the markers can be localized anywhere in
the genome and often little sequence data are available
in public databases for comparison with other
sequences. Therefore, extensive screening using a large
collection of strains is necessary to validate the
robustness of these markers. Lievens et al. (2008) have
listed specific PCR primers for the detection and
identification of several formae speciales and races of
F.o. Such markers that are based on specific DNA
sequences in the pathogen genomes could be used for
pathogen identification as well as for their phylogenetic
studies.
ITS and IGS. The ITS region of rRNA genes is a
useful marker for discriminating species because it
contains stretches of high sequence conservation, while
at the same time, the size of the sequence varies in
different Fusarium formae speciales (Suga et al., 2000;
Visentin et al., 2010). It has been successfully used
before for the identification of Aspergillus (Henry et al.,
2000) and Fusarium (Gurjar et al., 2009) species. The
internal transcribed spacer (ITS) and intergenic spacer
(IGS) regions of the ribosomal RNA genes possess
characteristics that allow pathogen identification (Ward
1994; Appel and Gordon 1995; Waalwijk et al. 1996;
Edel et al. 2000; Bao et al. 2002; Singh et al. 2006).
Bateman et al. (1996) used PCR-RFLP of a PCR
product consisting of ITS1, 5.8S and ITS2 ribosomal
DNAs and eight restriction enzymes to distinguish 18
Fusarium haplotypes, while Edel et al. (1997) analyzed
further into the 5' end of the 28S rDNA gene to
distinguish five Fusarium haplotypes. However, neither
of these methods could not distinguish among F.
crookwellense, F. culmorum and F. graminearum,
indicating that they might be more closely related.
Indeed, Schilling et al. (1996) later found that the DNA
sequence of ITS1 region from F. culmorum and F.
graminearum was identical.

Additionally, species-specific primers could not be
designed due to the minor differences in the ITS2
region of the two Fusarium species. Mishra et al.
(2003) developed a fluorescent marker based PCR
assay for rapid and reliable identification of five
toxigenic and pathogenic Fusarium species viz.
Fusarium oxysporum, F. avenaceum, F. culmorum, F.
equiseti and F. sambucinum. The method was based on
PCR amplification of species-specific DNA fragments
using fluorescent oligonucleotide primers designed
from ITS region of rDNA.
Similarly, Abd-Elsalam (2003) developed taxon-
selective primers based on ITS sequences for quick
identification of the Fusarium genus, while Abd-
Elsalam et al. (2006) identified F.o. f.sp. vasinfectum
(Fov) using specific primers based on the 16S and 23S
rRNA genes. Based on differences in ITS sequences of
Fusarium and Mycosphaerella spp., Zhang et al. (2005)
developed species-specific PCR assays for rapid and
accurate detection of F.o. f.sp. niveum and
Mycosphaerella melonis from isolates of F.o. f.sp.
vasinfectum. PCR-RFLP based on the rDNA-IGS
region distinguished these isolates from other formae
speciales of F.o. Further, they identified single-
nucleotide polymorphisms (SNPs) in the 5' portion of
the IGS region and developed two specific real-time
PCR assays based on these SNPs for absolute
quantification of genomic DNA from the isolates
obtained from infected cotton tissues as well as soil
samples. Similarly, three Fusarium species from
Dendrobium were characterized by Latiffah et al.
(2009) using PCR-RFLP of ITS in 5.8S rRNA region.
They found that isolates from the same species
produced similar PCR-RFLP patterns and UPGMA
cluster analysis of the data clearly grouped Fusarium
oxysporum, F. proliferatum and F. solani into separate
clusters. Transposons. Mouyna et al. (1996) analyzed
the South American populations of F.o. f.sp. elaeidis
(an oil palm pathogen) and found that they had the palm
transposon. They also showed that the palm transposon
was present in all the pathogenic isolates, but was
absent in all the non-pathogenic isolates, indicating that
the pathogenic populations may be marked by the
transposon. Similarly, Fernandez et al. (1998) designed
specific primers for detection of F.o. f.sp. albedinis (the
date palm pathogen), based on the sequences of
transposable element Fot1. They analyzed a large
number of Fusarium isolates, including 286 F.o. f.sp.
albedinis isolates, 17 other formae speciales, non-
pathogenic F.o. isolates and eight other Fusarium
species and the specific primer amplified a 400-bp
fragment only in F.o. f.sp. albedinis.



Naroei and Salari 480

A diagnostic PCR assay to detect pathogenic F.o. races
causing wilt in carnation was developed by Chiocchetti
et al. (1999). This strategy was based on the genetic
characterization of strains using different transposons
and cloning and sequencing the regions flanking the
insertion sites of these elements, followed by
construction of race-specific primers for fast pathogen
identification. Using a similar approach, Pasquali et al.

(2007) developed inter-retrotransposon sequence
characterized amplified regions (IR-SCAR) technique
to differentiate F.o. f.sp. lactucaerace 1 isolates from
other F.o. and F.o. f.sp. lactucaeisolates.
Multiplex PCR.The PCR product is heated at increasing
temperatures and the double-stranded PCR product
starts 'melting', releasing the intercalated dye.
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Fig. 4. (a) Conventional melt curves of ITS marker. (b) Genotyping of Fusarium oxysporum formae speciales
complex using HRM analysis with the universal ITS nuclear marker. (b) Difference graph of seven formae speciales
using F. oxysporum f. sp. vasinfectum as reference genotype. Assigned genotypes using a cutoff confidence value of
90%. The HRM of all other formae speciales was compared to this control and was resulted as F. oxysporum f. sp.
vasinfectum at > 90% confidence or as variation if < 90% confidence. Color code table with the formaespeciales

used.

The rate of dissociation and the complete melting of the
PCR product depend on the thermodynamic properties
of the product, like the sequence length, the GC
content, the complementarity and nearest neighbor of
the particular DNA product, which in turn causes a
specific change in fluorescence and the observed
melting curve during HRM DNA dissociation (Reed
and Wittwer, 2004)Multiplex PCR allows simultaneous
and sensitive detection of different DNA or RNA
targets in a single reaction. It can, therefore, be
designed to determine the presence of more than one
pathogen in plant material by selectively amplifying
specific sequences in two or more of them, or to detect
related pathogens on multiple hosts (Louws et al.
1999). Simultaneous identification of several plant
pathogens by multiplex PCR has been reported by
Hamelin et al. (1996) and de Haan et al. (2000).
Demeke et al. (2005) developed a species-specific PCR
assay for the identification of nine Fusarium species
viz. avenaceum, acuminatum, crookwellense,
culmorum, equiseti, graminearum, poae,
pseudograminearum and sporotrichioides in pure
mycelial culture. Later, they could also simultaneously
and accurately identify F. culmorum, F. graminearum
and F. sporotrichioides using multiplex PCR. If such

specific primers are developed for common F.o. formae
speciales or physiological races, it would greatly
simplify their multiplexed detection and identification
for timely disease control (Elnifro et al. 2000).

C. Limitations of PCR-based Techniques
Although PCR-based techniques are rapid, highly
sensitive and specific, they might suffer from
robustness (van der Wolf et al. 2001). The failure of
PCR amplification to correctly diagnose infected and
non-infected plant material has been reported in
different comparative assays. Carry-over contamination
of amplicons can be responsible for false-positive
results and inhibitor components in sample extracts are
the main reason for false negatives. Similarly, PCR
based techniques (except reverse transcriptase-PCR)
can amplify the target DNA sequences from both active
and non-active or dead pathogen cells/spores (Malorny
et al. 2003). Therefore, it may yield false positive
results in some cases. Another important limitation of
PCR-based identification assays is that the technique is
not immediately quantitative. Although it is
comparatively easy to quantify the amount of a PCR
product produced as a result of a successful PCR
amplification, it is difficult to tell the amount of target
DNA initially present at the start of the reaction.
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This is because the reaction rate is exponential; as a
result, slight variations in the amplification procedure
can generate different amounts of final product from the
same amount of starting material. Although, target
DNA can be quantified using competitive PCR

(Nicholson et al. 1998), this method is labor intensive.
However, many of these limitations can be overcome
by using modern techniques like real-time PCR and
microarrays, which are increasingly being used for
routine pathogen identification.

Fig. 5. Quantitative detection of the RealAmp assay in artificially inoculated and partial field soil samples in
comparison with real-time PCR. All the samples were tested in triplicate. (a and b) Lanes 1-7 correspond to serial

10-fold dilutions of spores ranging from 106 to 100 spores g-1 artificially inoculated soil. Lane 8 is the negative
control. (c) Quantitative detection of partial field soil samples by the Real Amp assay. (d) Statistical comparison of

the quantitative results of partial field soil samples between the both assays. (c and d) Lanes 1-2 are the samples
collected from the area where watermelon was previously planted. Lanes 3-8 are the samples collected from the

watermelon-growing area with Fusarium wilt appearance.

RECENT TECHNIQUES FOR IDENTIFICATION
OF F.O.

Currently, the detection of plant pathogens is a
changing, dynamic and evolving world where
established protocols can be modified or optimized only
months after having been developed. Accurate and
routine pathogen detection requires high levels of
specificity, sensitivity, reliability and speed. In this
context, specificity can be defined as the capability to
detect the pathogen in the absence of false positives and
negatives, while sensitivity relates to the lowest number
of pathogens reliably detected per assay or sample
(Lopez et al. 2003). In addition, pathogen quantification
is also becoming important, since it serves as a basis for
establishing damage thresholds at which a pathogen
causes disease, and action thresholds that determine
when measures should be taken to limit or prevent
losses (Lievens et al. 2008). As F.o. is known to survive
and remain latent in soil for many years, detection
methods of high sensitivity, specificity and reliability
are required.

The battery of available techniques and probes for
detection of plant pathogens has increased considerably
over the last few years. In addition to time benefits,
there are great advantages in terms of specificity,
sensitivity and reliability with these techniques, as well
as, they allow identification of the pathogen
camouflaged by other microorganisms. Some of such
modern techniques currently used in identification of
plant pathogens are discussed below.

A. Real-Time PCR
The RealAmp reaction was conducted as described
previously (Peng et al., 2012) with minor modifications
and optimization. Recently, the Eiken Chemical
Company Ltd (Tokyo, Japan) developed a loop-
mediated isothermal amplification (LAMP) method,
which is also available for quantification of DNA
(Notomi et al., 2000).The real-time PCR technology
provides escalating opportunities to identify
phytopathogenic fungi and has been used in several
studies for detection and identification of various
formae speciales of F.o. (Table 2).

Naroei and Salari 482

This is because the reaction rate is exponential; as a
result, slight variations in the amplification procedure
can generate different amounts of final product from the
same amount of starting material. Although, target
DNA can be quantified using competitive PCR

(Nicholson et al. 1998), this method is labor intensive.
However, many of these limitations can be overcome
by using modern techniques like real-time PCR and
microarrays, which are increasingly being used for
routine pathogen identification.

Fig. 5. Quantitative detection of the RealAmp assay in artificially inoculated and partial field soil samples in
comparison with real-time PCR. All the samples were tested in triplicate. (a and b) Lanes 1-7 correspond to serial

10-fold dilutions of spores ranging from 106 to 100 spores g-1 artificially inoculated soil. Lane 8 is the negative
control. (c) Quantitative detection of partial field soil samples by the Real Amp assay. (d) Statistical comparison of

the quantitative results of partial field soil samples between the both assays. (c and d) Lanes 1-2 are the samples
collected from the area where watermelon was previously planted. Lanes 3-8 are the samples collected from the

watermelon-growing area with Fusarium wilt appearance.

RECENT TECHNIQUES FOR IDENTIFICATION
OF F.O.

Currently, the detection of plant pathogens is a
changing, dynamic and evolving world where
established protocols can be modified or optimized only
months after having been developed. Accurate and
routine pathogen detection requires high levels of
specificity, sensitivity, reliability and speed. In this
context, specificity can be defined as the capability to
detect the pathogen in the absence of false positives and
negatives, while sensitivity relates to the lowest number
of pathogens reliably detected per assay or sample
(Lopez et al. 2003). In addition, pathogen quantification
is also becoming important, since it serves as a basis for
establishing damage thresholds at which a pathogen
causes disease, and action thresholds that determine
when measures should be taken to limit or prevent
losses (Lievens et al. 2008). As F.o. is known to survive
and remain latent in soil for many years, detection
methods of high sensitivity, specificity and reliability
are required.

The battery of available techniques and probes for
detection of plant pathogens has increased considerably
over the last few years. In addition to time benefits,
there are great advantages in terms of specificity,
sensitivity and reliability with these techniques, as well
as, they allow identification of the pathogen
camouflaged by other microorganisms. Some of such
modern techniques currently used in identification of
plant pathogens are discussed below.

A. Real-Time PCR
The RealAmp reaction was conducted as described
previously (Peng et al., 2012) with minor modifications
and optimization. Recently, the Eiken Chemical
Company Ltd (Tokyo, Japan) developed a loop-
mediated isothermal amplification (LAMP) method,
which is also available for quantification of DNA
(Notomi et al., 2000).The real-time PCR technology
provides escalating opportunities to identify
phytopathogenic fungi and has been used in several
studies for detection and identification of various
formae speciales of F.o. (Table 2).

Naroei and Salari 482

This is because the reaction rate is exponential; as a
result, slight variations in the amplification procedure
can generate different amounts of final product from the
same amount of starting material. Although, target
DNA can be quantified using competitive PCR

(Nicholson et al. 1998), this method is labor intensive.
However, many of these limitations can be overcome
by using modern techniques like real-time PCR and
microarrays, which are increasingly being used for
routine pathogen identification.

Fig. 5. Quantitative detection of the RealAmp assay in artificially inoculated and partial field soil samples in
comparison with real-time PCR. All the samples were tested in triplicate. (a and b) Lanes 1-7 correspond to serial

10-fold dilutions of spores ranging from 106 to 100 spores g-1 artificially inoculated soil. Lane 8 is the negative
control. (c) Quantitative detection of partial field soil samples by the Real Amp assay. (d) Statistical comparison of

the quantitative results of partial field soil samples between the both assays. (c and d) Lanes 1-2 are the samples
collected from the area where watermelon was previously planted. Lanes 3-8 are the samples collected from the

watermelon-growing area with Fusarium wilt appearance.

RECENT TECHNIQUES FOR IDENTIFICATION
OF F.O.

Currently, the detection of plant pathogens is a
changing, dynamic and evolving world where
established protocols can be modified or optimized only
months after having been developed. Accurate and
routine pathogen detection requires high levels of
specificity, sensitivity, reliability and speed. In this
context, specificity can be defined as the capability to
detect the pathogen in the absence of false positives and
negatives, while sensitivity relates to the lowest number
of pathogens reliably detected per assay or sample
(Lopez et al. 2003). In addition, pathogen quantification
is also becoming important, since it serves as a basis for
establishing damage thresholds at which a pathogen
causes disease, and action thresholds that determine
when measures should be taken to limit or prevent
losses (Lievens et al. 2008). As F.o. is known to survive
and remain latent in soil for many years, detection
methods of high sensitivity, specificity and reliability
are required.

The battery of available techniques and probes for
detection of plant pathogens has increased considerably
over the last few years. In addition to time benefits,
there are great advantages in terms of specificity,
sensitivity and reliability with these techniques, as well
as, they allow identification of the pathogen
camouflaged by other microorganisms. Some of such
modern techniques currently used in identification of
plant pathogens are discussed below.

A. Real-Time PCR
The RealAmp reaction was conducted as described
previously (Peng et al., 2012) with minor modifications
and optimization. Recently, the Eiken Chemical
Company Ltd (Tokyo, Japan) developed a loop-
mediated isothermal amplification (LAMP) method,
which is also available for quantification of DNA
(Notomi et al., 2000).The real-time PCR technology
provides escalating opportunities to identify
phytopathogenic fungi and has been used in several
studies for detection and identification of various
formae speciales of F.o. (Table 2).



Naroei and Salari 483

It can more accurately quantify the extent of pathogen
biomass in the host tissue and, with multiplex formats,
enables simultaneous detection of different pathogens
(Lievens et al. 2003). The main advantage of real-time
PCR assay over end-point quantitative PCR is that the
amplification products can be monitored as they are
accumulated in the exponential phase (Schena et al.
2004), thus allowing precise measurement of fungal
DNA content in the reaction.
Pasquali et al. (2004) developed a real-time PCR assay
based on TaqMan chemistry to identify a new group of
F.o. f.sp. chrysanthemiisolates highly pathogenic on
Paris daisy. They successfully identified infected plants
using real-time PCR as early as the fifth day after
artificial inoculation, although the plants remained
symptomless until the 13th day after inoculation. Zhang
et al. (2005) used real-time PCR to identify and
quantify F.o. f.sp. niveum and Mycosphaerella melonis
pathogens directly from soil samples. Similarly, Abd-
Elsalam et al. (2006) used real-time PCR based on the
16S and 23S rRNA genes to detect F.o. f.sp.
vasinfectum (Fov) in cotton. The assay detected as low
as 200 fg of Fov genomic DNA in infected cotton roots,
while no amplification was obtained from other plant
structures such as stem and leaf. Lievens et al.
(2007).developed a robust RAPD marker-based assay
to specifically detect and identify the economically

important cucumber pathogens F.o. f.sp. cucumerinum
and F.o. f.sp. radicis-cucumerinum. They used the real-
time PCR assay to confirm that the selected RAPD
markers for F.o. f.sp. cucumerinum and F.o. f.sp.
radicis-cucumerinum represented single copy DNA
sequences. Likewise, Zambounis et al. (2007)
developed two specific real-time PCR-based assays
based on the SNPs found in the 5' portion of the rDNA-
IGS regions for quantification of genomic DNA of
Australian isolates of F.o. f.sp. vasinfectum from
infected cotton tissues as well as soil samples.
However, like all other molecular methods based on
DNA amplification, a major drawback of the system is
that it is unable to distinguish between viable and dead
propagules. Similarly, multiplexing in real-time PCR is
limited by the number of different fluorescent dyes
available. In addition, the initial and running costs of a
real-time PCR system are several times more than a
normal PCR system. However, considering the many
benefits of the real-time PCR technology compared to
normal PCR, the use of real-time PCR is still
advantageous. Higgins et al. (2003) developed a
portable real-time PCR instrument for performing
diagnostic assays directly in the field. Such rapid real-
time PCR diagnosis could result in taking appropriate
and timely control measures than possible with
traditional methods of pathogen identification.

Fig. 6. Using the cutting point defined by the fusion point criteria (Mingotti, 2005), five groups were formed .
Isolate FOC143 remained separate from the others in Group I, showing broad molecular differences in relation to

those of FOP isolates. Group II consisted of isolates from Cruz das Almas (FOP001), Ubaira (FOP013, FOP023 and
FOP057) and Linhares (ES) (19°23'27" S, 40°4'17" W) (FOP069).
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Isolate FOC143 remained separate from the others in Group I, showing broad molecular differences in relation to

those of FOP isolates. Group II consisted of isolates from Cruz das Almas (FOP001), Ubaira (FOP013, FOP023 and
FOP057) and Linhares (ES) (19°23'27" S, 40°4'17" W) (FOP069).



Naroei and Salari 484

Fig.  7. Specificity test of the real-time fluorescence loop-mediated isothermal amplification assay (RealAmp assay)
for the detection of Fon in comparison with conventional PCR. Lanes 1-4, genomic DNAs of Fusarium oxysporum
f. sp. niveum (Fon) race 0, race 1, race 2, artificially inoculated soil samples, respectively; Lanes 5-8, the DNA of

Mycosphaerella melonis, F. oxysporum f. sp. cucumerium, F. oxysporum f. sp. luffae, and F. oxysporum f. sp.
cubense race 4, respectively; Lane M, Trans2K plus II DNA marker. (a) Agarose gel electrophoresis analysis of

Real Amp assay amplicon. (b) Conventional PCR using the specific Fon-1/Fon-2 primer set. (c) Visual detection of
the Real Amp amplification products. The original orange colour of SYBR green turned green in the positive

reaction mixture. (d) The fluorescence units vs. time graph were plotted automatically by the ESE-Quant Tube
Scanner.

B. Microarrays
The application of microarrays in the detection of
pathogens in various environments has enabled parallel
detection of multiple species in a high throughput
format conducive to automation (Small et al. 2001; Loy
et al. 2002). For pathogenic fungi, microarray analysis
has great potential to systematically and efficiently
identify genes required for infection (Lorenz 2002;
Bryant et al. 2004). A Magnaporthe grisea array is now
commercially available from Agilent Technologies.
A molecular detection system based on DNA array
technology was developed by Lievens et al. (2003) for
rapid and efficient detection of tomato vascular wilt
pathogens F.o. f.sp. lycopersici, Verticillium albo-atrum
and V. dahliae. The array was successfully used for
sensitive detection of the tomato wilt pathogens from
complex substrates like soil, plant tissues and irrigation
water as well as samples collected by tomato growers.
Similarly, microarray analysis of F.o. f.sp.
vasinfectumgenes expressed in planta (McFadden et al.
2006) has revealed pathogenic genes in the cotton
pathogen. The expression of this gene was also
positively correlated with vascular browning, which is a
characteristic symptom of Fusarium wilt infection

(McFadden et al. 2006). Guldener et al. (2006) reported
the design and validation of the first Affymetrix Gene
Chip microarray based on the entire genome of
Fusarium graminearum.

C. Gene/Genome Sequencing
One of the most robust and informative techniques
useful in fungal diagnosis is nucleotide sequencing,
where DNA sequence variations can be used to design
species-specific primers and/or probes. Sequences of
the TEF-1a and the mitochondrial small subunit
(mtSSU) ribosomal RNA genes have been valuable in
distinguishing species (Baayen et al. 2000; O'Donnell
et al. 2000; Baayen et al. 2001; Skovgaard et al. 2001).
Phylogenetic analysis of TEF-1a data by Gurjar et al.
(2009) from four Foc races revealed that the race 3 of
the pathogen was actually Fusarium proliferatum and
not Fusarium oxysporum as has been considered till
now. Similarly, DNA sequences of UTP-ammonia
ligase, trichothecene 3-O-acetyltransferase, and a
putative reductase (O'Donnell et al. 2000) and nitrate
reductase, phosphate permease (Skovgaard et al. 2001)
have also been used successfully to distinguish
Fusarium species.
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EMERGING TECHNOLOGIES FOR PATHOGEN
IDENTIFICATION

A. Next-Generation Sequencing
Among these sequencing platforms, the 454 GS FLX
instrument currently has the ability to sequence 400-
600 million bp per run (with 400-500 bp individual
reads) using the Titanium series reagents
(http://www.454.com/). Due to its high accuracy, low
cost and long reads compared to the Solexa and Solid
systems, many researchers have migrated toward the
454 sequencing platform for a variety of genome
projects. As these instruments have the potential of
sequencing several microbial genomes in a single run, it
is very likely that the genomes of economically
important plant pathogens, including various Fusarium

species, will be shortly available. Indeed, genome
sequencing projects of several Fusarium species are
already in progress. Based on the analysis of these
genomes, specific oligonucleotide sequences could be
used to design microarray chips, detection probes or
PCR primers for high-throughput or multiplexed
detection and identification of different F.o. strains.

B. Single-nucleotide polymorphisms
Detection and characterization of single-nucleotide
polymorphisms (SNPs) is also one of the promising
post-genomics research tools for pathogen
identification. This new technology is pushing pathogen
identification to its ultimate limit-the single base pair
difference.

Fig. 8. Discriminatory potential of Fox1-derived mismatch detector oligonucleotides upon hybridization with different amounts
of internal transcribed spacer (ITS) II (a) and ITS I-5.8S rRNA gene-ITS II (b) amplicons from Fusarium oxysporum. Results are

only shown for those oligonucleotides that resulted in detectable hybridization signals. Mismatch positions are indicated
following the code of the oligonucleotide. Hybridization signal strength is reported relative to the average integrated optical

density of the digoxigenin-labeled reference control (rIOD). Data represent means from three hybridization runs (n=6). Error bars
indicate standard errors. Before hybridization, amplicons from different PCR reactions were pooled to minimize variability

because of differences in DNA amplification.
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It is presumed that many plant pathogenic races or
formae speciales differ from their closest relatives by
only a few bases in different genes. The next-generation
sequencing platforms can rapidly carryout deep
sequencing of microbial genomes, enabling quick
discovery of SNPs in different pathogenic strains of the
microbial species. This will enable designing forma
specialis or race-specific cleaved amplified
polymorphic sequence (CAPS) or derived cleaved
amplified polymorphic sequence (dCAPS) markers for
PCR-based identification. CAPS markers result from
differential restriction digestion of gene/allele specific
PCR products based on the loss or gain of restriction
enzyme recognition sites due to the presence of SNPs
or insertion/deletion mutations. While, in dCAPS
analysis, a restriction enzyme recognition site that
includes the SNP is introduced into the PCR product by
a primer containing one or more mismatches to
template DNA (Neff et al. 1998).

C. Metagenomics
It is the study of genomic content of microbial
organisms directly in their natural environments,
bypassing the need for isolation and culturing of
individual species (Chen and Pachter 2005). Hence,
metagenomics enables studies of organisms that are not
culturable as well as studies of organisms in their
natural environment. Using the metagenomics
approach, these new sequencing technologies enable
researchers to quickly and affordably identify the
organisms present in a complex sample (such as soil,
irrigation water or plant tissues) without any prior
knowledge. Such metagenomics approach to pathogen
identification should facilitate quick identification and
quantification of a range of pathogens present in the
sample and enable undertaking appropriate disease
control strategies well before the pathogen populations
rich damage thresholds. The 454 GS FLX System is
very suitable for metagenomics as the system's long
reads help in accurate identification of pathogenic
strains present in the sample. Researchers often use the
platform for counting gene tags to analyze the relative
abundance of different microbial species in different
samples.

POTENTIAL LIMITATIONS OF MOLECULAR
IDENTIFICATION TECHNIQUES

PCR could amplify DNA from both active and non-
active or dead pathogen cells/spores. Therefore, it may
yield false positive results in some cases. Similarly,
false negatives can be attributed in standard PCR
protocols due to the presence of compounds that inhibit
the polymerases, degradation of the DNA target
sequence, or reagent problems (Louws et al. 1999).
Likewise, although microarray is the most suitable
technique for multiplexed detection of many isolates of
F.o. and other pathogens in a single assay, currently

microarrays are expensive for routine application.
Moreover, additional work is needed to address the
challenges of working with environmental samples
where contaminants may interfere with DNA
hybridization and affect the performance of
microarrays. Similarly, the lack of adequate sequence
information can hamper the development of reliable
molecular diagnostic assays. Moreover, techniques like
DNA barcoding are presently unable to differentiate
pathogenic strains from non-pathogenic ones that
belong to the same microbial species. Hence, if no
molecular markers are available to distinguish the
pathogenic subspecies, pathogenicity test is the only
way to determine whether or not a given isolate is
pathogenic on a specific crop or variety.
Although technically feasible and potentially
invaluable, large sequencing studies still face
significant challenges. Foremost among the challenges
is analyzing the tremendous amounts of data generated
(Nelson 2003). It is relatively easy to characterize genes
and genomes of a well-studied and easily cultivated
microbe, however, it would be a the daunting task to
understand the genomics of unknown or uncultured
microbes or whole environmental genomes revealed by
metagenomics approaches. For example, Tringe et al.
(2005) could assemble as many as 150,000 sequence
reads into contiguous sequences spanning only 1% of a
soil metagenome.

CONCLUSIONS

As these new molecular technologies gain wide
acceptance, routine detection, identification and
monitoring of plant pathogens should become more
common in plant pathology. Microarray chips are now
being fabricated with oligonucleotides that are either
synthesized directly on a solid surface or are
microspotted. Similarly, the next generation sequencing
technologies like 454 and SOLiD can sequence several
microbial genomes in a single run. If the complete
DNA sequence of plant pathogens is known,
oligonucleotides specific for a pathogen can be
designed and a single high-density microarray chip
could accommodate oligonucleotides specific for a
large number of pathogens. In the next few years,
complete genome sequences of many pathogenic strains
of F.o. are likely to become available and these will
help to design PCR primers or probes very specific to
the pathogen strains enabling accurate identification of
the strains even if camouflaged by other pathogens. For
example, if each microarray chip contained
oligonucleotides specific for each of the known formae
speciales and races of F.o., it would be possible to have
multiplex detection of all these pathogens in one
experiment even from complex substrates like soil,
plant tissues and irrigation water.
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With such high-throughput technologies, integration of
more strains into the detection systems of F.o. should
become possible and identification of pathogens is
likely to become an easier task. However, these should
be observed as management tools, to be used in
combination with the knowledge of the crop and
understanding of the biology of the different formae
speciales and the ecology of the diseases. In this
respect, the increasing availability of full-genome
sequences of many plant pathogens including formae
speciales of F.o. is a welcome development. With the
availability of affordable and portable real-time PCR
instruments (Higgins et al. 2003) and simpler protocols,
molecular-based diagnosis of crop diseases is becoming
a field reality. Routine diagnosis of many crop diseases
is now possible in one day or less by the recent
innovative technologies. This, coupled with high
throughput that reduces the cost per sample, should
make these assays more attractive for use in crop
protection. A combination of DNA microarrays with
other genomic methods will certainly accelerate the
efforts to characterize the function of unknown
stretches of the fungal genomes. The resulting database
will allow complete analysis of developmental
processes that are characteristics of the fungus,
including the molecular nature of pathogenicity.
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